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In this book a ncw method of lnveatlgatlng the 
problem of shellr of positive Gaussian curvature IS 
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INTRODUCTION 

. This book investigates the stability of shells of positive Gaussian 
curvature when subjected to various modes of loading. 
is based on the following two considerations: 

1 .  The load supported by the shell a t  the moment of l o s s  of stability is 
stationary and, therefore, changes but little under a substantial bulging of 
the shell. 

The deformation of the shell under substantial bulging beyond the 
neighborhood of the boundary of the bulging zone can be considered as a 
geometric bending. 

It follows from condition 2 that the energy of deformation of the shell a t  
the pr imary  stage of postcritical deformation is concentrated, in the main, 
along the boundary of the zone (zones) of bulging. 
formula for the energy of deformation, per  unit length of boundary, is 
derived 

The method used 

2. 

In section 1 the following 

Here,  5~ is the angle between the plane of contact to the boundary of the 
bulging zone, *I, and the planes tangent to the surface; p is the radius of 
curvature of r ;  h ,  the change in shell  deflection when passing ac ross  the 
boundary into the zone of bulging; 6, the thickness of the shell; E ,  the 
modulus of elasticity; and v ,  Poisson's ratio. The establishment of this 
formula is the basic resul t  of this section, and i s  widely used in all further 
deliberations. 

of a shallow shell rigidly fixed at  the edge and subjected to uniform 
external p re s su re .  
l o s s  of stability occurs, 

In the s a m e  section a study is made of the problem of lo s s  of stability 

A formula for the value of the cri t ical  p re s su re  a t  which 

is derived. 
center of bulging. 

jected to the p re s su re  of a tightly drawn string is considered. 
following formula for the cri t ical  pull of the string, Q ,  is derived 

Here,  R, and R, denote the principal radii  of curvature a t  the 

At the end of the section the problem of loss  of stability of a shell sub- 
The 

where R,  is the radius of normal curvature of the shell surface in the 
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direction of the string, and c i s  a constant 1 0 . 2 .  
stability of a shell supported by an elastic foundation i s  studied and a 
formula for the cri t ical  s t r e s s  i s  obtained. 

postcritical deformation of the shell. Starting with the assumption that 
change of shape of the shell beyond the neighborhood of the bulging zone 
boundary i s  small ,  we pass  from finite bending to the infinitely small and 
derive an explicit expression for the bending field. The study i s  confined 
to the case when the zone of bulging i s  small, has  an elliptic shape, and 
is freely orientated with respect  to the principal directions of the shell 
surface.  Results arr ived at  in this section find substantial application 
la ter  on. 

The third section begins again with a study of the problem of cri t ical  
external p re s su re  for shallow shells of positive Gaussian curvature and 
a rigidly fixed edge. 
the deformations considered a r e  general. 
number of limitations which narrowed down the application range of the 
resul ts  of section 1 .  
arr ived at  in this section, i s  identical with the previous result ,  namely 

The question of l o s s  of 

In section 2 a study i s  made of the geometry of the pr imary  stage of the 

This study is different from that of section 1 in that 
Such an approach frees u s  of a 

The formula for the value of the cri t ical  pressure,  

Section 3 also includes a discussion of the question of internal and 
external cri t ical  p re s su re  for a shell of rotation of positive Gaussian curva- 
ture.  
by the formula 

It is found that internal cri t ical  p re s su re  for such a shell i s  given 

where p is the radius of the parallel along which the regions of bulging a r c  
situated; all other quantities retain their previous meanings and are re- 
lated to the centers of bulging. 
strongly elongated along the meridians of the surface.  

is given by the following formula: 

It i s  shown that the regions of bulging are 

The value of the external critical p re s su re  for a convex shell  of rotation 

When applied to the case of a closed spherical  shell, this formula gives 
the following value for the cri t ical  pressure:  

2 n '  2 
n ( l - v ' ) / ? : ? i '  P =  

2 
which equals Tof the value obtained for a shallow shell. 
is accompanied by the formation of flattened out dents along the equator. 
Application of the general resul t  to the case  of shallow shel ls  does not 
contradict the corresponding formulas for shallow shel ls  because of 

Loss of stability 
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I .  

smallness of the rat io  pa/2R1R,. In addition, it agrees with known ex- 
perimental facts according to which, in a number of cases,  l o s s  of stability 
of a convex shell under external p re s su re  i s  accompanied by the formation 
of a system of bulging regions along the edge of the shell. 

Section 3 a lso includes a study of l o s s  of stability of shells of rotation 
subjected to twist. Fo r  the value of the cri t ical  moment causing lo s s  of 
stability, the following formula i s  obtained: 

where p i s  the radius of the parallel  along which bulging of the shell 
takes place. 

The fourth section studies postcritical deformations proper of a shell of 
positive Gaussian curvature subjected to two modes of loading: a concentrated 
load, and uniform external pressure.  This problem was discussed previously 
in 1 2 1 .  The innovation here consists in the derivation of a more  exact 
expression for  the shell deformation energy. 
to study the influence of initial bending of the shell on the cri t ical  load. 
is shown that the value of the cri t ical  load for a shallow shell with edge 
rigidly fixed and subjected to external pressure  i s  decreased and i s  equal 
to 

Results arrived at  a r e  used 
It 

where 2h i s  the initial deflection. This formula was derived under the 
assumption of substantial initial deflection. 
to assume that 2hl6 > 1. 

layer  shell i s  presented in the supplement to this work. 
the value of the cri t ical  p ressure  for a shallow shell of positive Gaussian 
curvature is obtained: 

In any case,  i t  i s  necessary  

A method of approach to the study of the stability problem of a three- 
A s  an example, 

where 6 i s  the thickness of the outer layers; 
layer;  E ,  the modulus of elasticity of the outer layers; and G ,  the shear 
modulus of the filler. 

t ,  the thickness of the inner 
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1.  LOSS OF STABILITY O F  A SHELL OF 
POSITIVE GAUSSIAN CURVATURE WHEN 
SUBJECTED TO EXTERNAL PRESSURE 

We showed in / I  / that our method for studying postcritical deformations 
can be used to investigate stability problems. 
for the value of the upper cri t ical  load for a shallow spherical  segment 
subjected to uniform external pressure.  The same considerations were 
taken into account for  this derivation as were used in the study of post- 
cri t ical  deformations. 
general study of shallow shells of positive Gaussian curvature.  At f i r s t ,  
we shall confine ourselves to simple problems in order  to apply this new 
method to simple examplcs with well-known r r su l t s .  

W e  also derived a formula 

In this section this method will be applied to a 

1.  E n e r g y  of e l a s t i c  d e f o r m a t i o n  o f  a 
s h e l l  a t  t h e  i n i t i a l  s t a g e  of b u l g i n g  

W e  shall consider a shallow shell of positive Gaussian curvature,  fixed 
a t  i t s  edges and subjected to external p re s su re .  I:or :I certain value of 
U U C l l  u p* L U Y U I  c LAIC_ u* ,c * *  ""111 I V J L  L I D  J L U U I I I L J .  I L  b b U . 3  J,,""",, 11 1  , I , ,  u 

study of postcritical deformation of a spherical  shell after l o s s  of stability, 
that in the case of a uniform load such a deformation must  s t a r t  by bulging 
occurring throughout a certain region. 
spread out from some central point i s  excluded. 
conjunction with the fact that in the final phase the deformation of the shell  
under consideration must approximate to the s t a t e  of m i r r o r  image bulging, 
enables U S  to regard the shape of the shell a t  the s tar t ing phase of post- 
cri t ical  deformation a s  being close enough to the state of double m i r r o r  
image bulging (Figure 1).  It is assumed, of course,  that the degree of 
fixity of the shell edge a t  the support i s  rigid and that the bulging region 
comprises  a sizeable portion of the shell, thus enabling the rigidity of the 
fixed edge to predetermine the above-mentioned shell  deformation at 
the final phase. 

The case when bulging begins to 
All the above, takrn in 
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In § 3 we shall examine a more general case of postcritical deformation 
a t  the initial phase, relaxing the requirement regarding mode of edge support 
and size of bulging region. However, as we shall s e e  presently, this w i l l  
not alter the final value of the magnitude of critical p re s su re  obtained in the 
present problem. We shall therefore limit ourselves in the present section 
to the above-mentioned simple deformation and will concentrate our atten- 
tion on other questions related to the applicability of our method, e .  g., 
the evaluation of shell deformation energy, which we w i l l  deal with presently. 

Starting with our initial assumption regarding the character of post- 
cri t ical  deformation of the shell surface w e  consider that the deformed 
shape of the shell approximates well to i t s  original shape within zone A, 
(Figure 2) and to the double m i r r o r  image bulging within zone A , .  The 
transitive zone A,, is considered narrow enough. 
curve separating zones A, and A,, p, i t s  radius of curvature, and a ,  the 
angle between the plane of 

Using the procedure of Appendix I1 of / I  1 ,  where the value of the de- 
formation energy of a spherical shell w a s  derived, we obtain for the de- 
formation energy U in the zone of substantial local bending of the shell ( A l Z ) ,  
and for unit length of T ,  the expression 

Let  denote the assumed 

and the planes tangent to the surface. 

.. 

In the above expression u denotes the normal displacement of points of the 
shell middle surface under deformation, and u, the displacement in the 
tangent plane in a direction perpendicular to 7 .  Integration between the 
l imits  - e * ,  e* i s  carr ied out along the assumed breadth of zone A,2. 
deformation of the middle surface in a direction perpendicular to 7 ,  we 
a r r ive  at  the well-known expression relating the displacements u and u, 

Ignoring 

1 
U' + KU' $- Ula = 0. 

R e m  a r k s  . In the present discussion, as wel l  a s  previously, when- 
ever  we speak of the energy of deformation in the zone of strong local 
bending we consider, in addition to shell bending, the accompanying ex- 
tension (contraction) of i t s  middle surface. Of the two t e rms  in the ex- 
pression under the integral sign, the f i r s t  accounts for the energy of 
bending and the second for the energy of extension (contraction) of the 
middle surface. 

u,  U, S ,  where 
As in our previous studies, we replace the variables u, u, s by variables - - -  

u - u ' - s  

83 

- 
u = -  a ,  s = -  

PE ' rpa' cJ = - 
E4 = - 

12p2a' * 

Omitting, for simplicity, the ba r s  in these new variables, the expression 
for will take the form: 

-. 
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The limits of integration ?* and --E* increase indefinitely in their 
absolute value a s  pa/& increases.  Therefore,  upon limiting ourselves to 
the case of such shells and deformations for which 8/pa is small, the l imits  
of integration can be changed to f m. Then 

We shall always take the function (0)s to be symmetr ic  and u(s )  to be 
antisymmetric. W e  can therefore integrate betwein the l imits  (0,'m): 

The above expression for the energy is substantially a function of the 

A s  in previous studies w e  

We characterize this deformation by 

shape of the shell in the transitive zone A,, which, in turn, is defined by 
the functions u. u prescribing the deformation. 
shall evaluate the energy D by using the condition that i t  be a minimum 
under a given general deformation. 
a deflection h with the region of arching and in the vicinity of the given 
point of curve a t  which energy i s  considered. All this assumes a 
definite meaning a s  the width of the transitive zone A,, decreases  indefinitely. 
Under our present assumption regarding the character  of postcritical de- 
formation, h i s  a constant defined by the displacement of the zone of bulging. 
In the more general study, to be undertaken l a t e r  on, h varies  along the 
curve 'I. 

In t e r m s  of the initial variables v and s, h can be expressed a s  

h=- -S  v'ds. 
.* 

If we change to new variables and change the l imits  of integration 5* and 
--i* to f o o ,  we obtain 

Finally, by taking into account the expected symmetry of the function u(s). 
we obtain 

Thus, the energy 0, as w e l l  as the function 11, u on which i t  depends, 
a r e  determined from the condition that the functlulldl 

be a minimum, given that - 
- 2 vGj vds = h = const. 

1 zl/a 
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In addition to the above integral equation, the variable functions u, v must 
satisfy the equation 

u1+ v + ;= 0 

and their values a t  infinity must be zero.  

2 .  S o l u t i o n  o f  t h e  v a r i a t i o n a l  p r o b l e m  f o r  
t h e  f u n c t i o n a l  

Le t  u s  examine the problem of the minimum value of the functional L'. 
We f i r s t  transform the equation 

using the relation 

u' + u + o'= 0. 2 

If we integrate this equation between the l imits -m and 03 and use the 
fact that u ( - a )  = u (a) = 0 ,  we obtain - - 

- vds = f ds. 
-_ -_ 

Further ,  taking into account the symmetry of the function v(s), we obtain 

It follows that the integral equation in u ( s )  can be presented in the form 

Consequently, our variational problem consists of evaluating the minimum 
of the functional 

under the following conditions: 

u'+ u +; = 0, 
u (0) = u (CG) = u(a) = 0. 



. 
Since we a r e  only interested in the initial stage of postcritical deforma- 

tion, we can omit the te rm d i 2  in the relation 

u' + v + ;= 0 

thus obtaining the simplified form 

u' + 0 = 0. 

If we substitute v everywhere instead of u' our problem reduces to 
finding the minimum of the functional 

where 

- $q u'a ds = h = const 

and the boundary conditions 

u (0) = u (a) = 0 
arc' satisfied. 

is rccluced to the investigation of the unconditional extremum of the 
functional 

In accordance with the Euler-Lagrange method our variational problem 

" " , I L L  c n L O  O V l l l C  L V L I d L U L I L .  

Assuming for the sake of brevity that 

we may consider our problem as reduced to finding the extremum of the 
functional - 

I = (us + u"' - au's) ds, 
0 

which differs from W by a constant factor.  
The Euler-Lagrange equation for the functional I is 

uIv + u + au" = 0, 

k d  i t s  general  solution is given by 

U (S) = CkeWk' , 

where q denote the roots of the character is t ic  equation: 

d + 1 + a d  = 0. 
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It is evident that in the complex plane z = x + iy these roots  a r e  placed sym- 
metrically with respect  to the origin and the x-axis and consequently their  
absolute value equals unity. 

roots  amongst the roots wk with negative r ea l  parts.  
two roots  by w1 and w a r  the solution of our variational problem is given 
by a function u (s) of the type 

In order  to satisfy the boundary condition u ( w )  = 0 ,  there must be two 
If we denote these 

u = c1 emis + c,e":*. 

Further,  in order  that the second boundary condition u (0) = 0 be satisfied, 
w e  must have c, = -c, = c .  
for u (s) : 

In such a case we have the following expression 

= c ( p z s  - p z s ) .  

Substituting the above function into the expression for the functional fi 
and the relevant integral connection, w e  obtain 

The roots  w, and oa a r e  complex conjugate and have absolute values of 
unity. We can therefore put 

w - eie 0 - e-ie 
1 -  3 a -  . 

Substituting these values into our integral expressions w e  obtain - 
sin' 8 
cos 8 urSds = ca-, 

0 

and hence 
- 5V/nas/sp-Vr U =  c' (2 + 4 cos'b), 

12". ( I  - p') 

{G , sin'% h = - c  -. 
12'14 cos 8 

It follows that 

The minimum value of D, with h =const, is obtained for 9 = and thus 

w e  are  led to the following final expression for the energy of deformation 

- 2EaWh U =  
{E(I -pp")p' 

This  expression for the deformation energy of the shell in the zone of 
We shall  use it in our study substantial local bending is very important. 
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of other, more general, cases  of deformations, which a re  not reduceable 
to that of double mi r ro r  image bulging. In fact, each time that bulging of the 
shell resulting from loss  of stability is effected throughout zone A,, bounded 
by curve y,  we shall calculate the deformation energy value in regions of 
considerable local bending in the vicinity of y, by the same formula 

In such a general  case a w i l l  denote the angle between the plane of contact 
of the y curve and the tangent planes of the surface; p ,  the radius  of 
curvature of the curve; and h ,  the change in shell deflection across  the 
boundary of the bulging zone. 

the energy of deformation by considering both the energy in the zone of 
considerable local bending and energy of bending along the original shell 
surface.  In our present study of the initial stage of postcritical deformation 
i t  may seem advisable to  proceed in a s imilar  manner. However, we soon 
see  that in our present case the deformation energy along the original shell 
surface i s  negligible and can be neglected. 
deformation which can be approximated by double mi r ro r  image bulging this 
i s  quite evident, since there i s  no change in curvature under deformation in 
each one of the zones A ,  and A,. 

Firstly, the total deformation energy in the zone of strong local bending 
is of the order  of magnitude 

In our previous investigations of postcritical deformations, we evaluated 

For the special case of shell 

Let us  investigate a general  case.  

Ebac2h. 

This  follows from the fact that the energy per  unit length of y is of the 
order  of magnitude EPa,h/p and the length y is of the order  p. 
the change in curvature of the middle surface inside the zone of bulging, 

follows, therefore. that the energy of deformation inside the bulging zone 
i s  of the order  of magnitude 

Furthermore,  

. . . * ,  . , - .  _. I_  , L . ~  ~1 

~ - 

It is quite natural to assume that the energy of bending on the remaining 
shell surface is of the same order  of magnitude. 

Thus, a t  the initial stage of postcritical deformation the o rde r  of 
magnitude of energy within the zone of considerable local bending i s  

EEWh, 

and that of deformation energy along the remaining surface is 

EVh' - 
P' . 

Taking into account that a i s  of the order  of magnitude QIR (where R is 
the normal curvature of the shell surface), w e  see  that our problem is 
reduced to comparing the order  of magnitude of two quantities 

I 10 



Taking into account the usual relationships between the various parameters,  
i t  i s  evident that the second quantity is of a smaller order  of magnitude. 

The above discussion leads u s  to  the conclusion that when considering 
the energy of postcritical deformation at  its initial stage, i t  i s  sufficient 
to take into account the energy in the zone of strong local bending only. 

3. E v a l u a t i o n  of t h e  u p p e r  c r i t i c a l  l o a d  
f o r  a shell of p o s i t i v e  G a u s s i a n  c u r v a t u r e  
s u b j e c t e d  t o  a u n i f o r m  e x t e r n a l  p r e s s u r e  

We define a load p acting on a shell to be a critical load i f  there exists 
the possibility that under the action of such a load the shell, in addition to 
i t s  basic deflected shape of elastic stability, might assume other shapes, 
very close to the basic shape, and accompanied by bulging. The least  
value of such a load is called upper cri t ical  load, At the moment of loss of 
stability by the shell, the load it c a r r i e s  is stationary with respect  to 
deformations accompanied by bulging. Making use of the equilibrium con- 
dition of the shell under such circumstances, the above fact enables u s  
to evaluate, with some approximation, the value of the upper critical load. 
Our method can then be applied when studying such elastic shell conditions. 

functional 
Elastic equilibrium of the shell i s  characterized by the fact that the 

W = U - - A ,  

must be constant. Here, U denotes the energy of elastic deformation of 
the shell and A the work done by the imposed loads. 
sideration the shell i s  shallow, rigidly fixed a t  i t s  edges, and of positive 
Gaussian curvature. 
bulging i s  mainly concentrated along the boundary of bulging and i ts  value, 

In the case under con- 

For such a shell the deformation energy under 

per unit length of curve 
for mu1 a 

In the above expression 

y defining the zone of bulging, i s  given by the 

a denotes the angle between the plane of contact to - 
the curve y and the planes tangent to  the surface; 
ture  of 7; h ,  the deflection within the bulging zone; and 6, the thickness 
of the shell. 

In our study we have approximated the arched shell shape by a double 
m i r r o r  image bulging, y being a plane curve. 
small  and the shell surface sufficiently regular, this curve approximates 
closely to  an ellipse similar to the indicatrix of curvature. 

of bulging a s  the origin, the tangent plane as the xy plane, and directing 
the x-and y-axes along the l ines of curvature of the surface.  
zone boundary 7 can then be defined by the equation 

p , the radius of curva- 

When the bulging zone is 

L e t  u s  introduce a system of rectilinear coordinates, taking the center 

The bulging 



where R, and R ,  are the main radi i  of curvature a t  the center of the bulging 
zone, and i is a parameter  characterizing the zone dimensions. 

tion energy D. We have 
L e t  u s  evaluate the quantities a and p entering the formula of deforma- 

I m s  _=- 
~(R1sinaI+R,cos*f)a//" 

In accordance with the formula of Menier 
a = pk.. 

where k ,  denotes the normal curvature of the shell surface in the direction 
of the tangent to the curve 7 .  Following Euler 's .  formula 

1 
kn = W+R,costr - 

An element of a r c  of the curve 7 is given by 

d s = A ( R , s i n ' t + R a c o d t ) ' ~ ' d t .  

Substituting the above values in the expression for U and integrating along 
the a r c  of the curve T ,  we find the full deformation energy to be 

= 4 r r E V h k 2  

{E ('I - pa) {ma' 
Let  u s  now calculate the work done by the external load. We have 

A = Qh. 

Where c! d e x t e s  the tct-1 ? C d  a c t k g  or: thc bilging siirface and h, the 
deflection. Further , 

Q = p S .  

where S i s  the bulging zone surface and p the p re s su re .  
consideration, S, being the area of an ell ipse with semiaxes equal to 
inl and ivi& is equal to 

In the case under 

Hence 

Now, making use of the equilibrium condition 

d (U - A )  = 0, 

we are in a position to calculate the load supported by the shell. We have, 

and i t  follows that 
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As stated previously, we shall study the value of the upper cri t ical  
p re s su re  for  shells of positive Gaussian curvature on the basis  of more  
general  assumptions regarding the mode of bulging, neglecting the case 
of double m i r r o r  image reflection. 
the value of cri t ical  p ressure  remains  the same. 

cr i t ical  load for shells subjected to a nonuniform external pressure.  
formula giving the value of the load supported by the shell under bulging 
shows that such a value is independent of the parameter h i 2 ,  which 
character izes  the deformation, and in particular, of the size of the bulging 
zone (parameter  A ) .  We a r e  therefore entitled to conclude that in the case 
of a nonuniform, but gradually changing external p re s su re  the cri t ical  
load is determined by the value of the maximal pressure.  

Such a study will, however, show that 

In conclusion w e  wish to make the following remark regarding the upper 
The 

As  w a s  to be expected, load p i s  stationary with respect to the parameter  
hP characterizing bulging. 

Gaussian curvature rigidly fixed at  i t s  edges i s  given by the formula 
Finally, the upper cri t ical  p re s su re  for a shallow shell of positive 

where R,, R, a r e  the main radii  of curvature of the shell; 
E ,  the modulus of elasticity; p ,  Poisson's ratio. It should be noted that 
I/R,R, i s  the Gaussian curvature. It follows, therefore, that the above 
formula can be expressed in the form 

6, the thickness; 

where K i s  the Gaussian curvature of the middle surface of the shell. 
For a spherical shell of radius R .  

R, = R ,  = R,  

and hence the formula for the cri t ical  p re s su re  is reduced to 

Considering that 
I--tLg"l, 

the above formula expresses  a well-known result  regarding spherical 
shells, namely 

4. L o s s  of s t a b i l i t y  a n d  c r i t i c a l  l o a d s  f o r  
v a r i o u s  o t h e r  c a s e s  of l o a d i n g  b y  
e x t e r n a l  p r e s  s u r  e 

It w a s  shown above that the resul t  achieved regarding lo s s  of stability 
of a shell  of positive Gaussian curvature when loaded by external p re s su re  

13 



is valid for cases  other than that of a uniform load. 
fact can be used in evaluating the cri t ical  load when the shell  is loaded 
by a continuous, but not necessarily,  uniform pressure.  We will now in- 
vestigate other cases  of loading, namely, those where the load applied to 
the shell surface is not continuous. 
basic importance: a load applied along a certain line, and a concentrated 
load. 

The case of a shell of positive Gaussian curvature subject to a con- 
centrated load has already been studied by u s  /1,2/. 
a mode of loading does not cause lo s s  of stability. 
that for  a complete investigation of the problem w e  need only examine the 
case where the load is applied along some line on the shell surface. It is 
not difficult to find an example to  i l lustrate such a case.  
shell subjected to the p re s su re  of a tightly drawn thread strung ac ross  i t s  
surface and w i l l  examine the relevant questions of l o s s  of stability and 
crit ical  load. 

edges and subjected to the p re s su re  of a thread tightly stretched along some 
a r c  of i t s  surface (Figure 3a). For  some value of the tensile force Q, l o s s  
of stability w i l l  occur accompanied by formation of bulging zones along the 
l ine of contact (Figure 3b). 
tensile force presently. 

To some extent this 

Two such cases  of loading a r e  of 

We showed that such 
It follows, therefore,  

We consider a 

Consider a shell of positive Gaussian curvature rigidly fixed a t  i t s  

W e  shall evaluate the value of such a cri t ical  

FIGURE 3 

In contrast  to the case previously considered, of pressure  distributed 
along the surface, when los s  of stability is accompanied by a simultaneous 
bulging of some finite zone of the shell, in our present  case,  bulging com- 
mences to spread out from some central  point situated on the line of con- 
tact between the thread and the shell. 

It seems quite natural to approximate the shape of the shell  under post- 
cri t ical  deformation to that of a simple m i r r o r  image bulging, as was done 
in /1,2/. 
the expression 

In such a case the energy of elastic deformation is given by 

U = W E  (2h)3 / 'W(k ,  + k g ) ,  

where 2h denotes deflection a t  the center of bulging; k, and k, are the 
principal curvatures of the shell; 8 is the thickness; E ,  the modulus of 
elasticity; and c is a constant. In accordance with the la tes t  data available 

0. I78 c = -  
I -p" 

p being Poisson's ratio.  
The work done by the tensile force is 

A = Q A l ,  
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where A1 is the finite displacement of the thread ends due to  shell bulging. 
Assuming the absence of friction between the thread and the shell sur-  

face and that, in consequence, the a rc  of contact between the thread and 
the shell i s  a geodetic, we can easily determine the value of A l .  It equals 
the difference between the a r c  AB and the chord joining i t s  ends. Denoting 
the normal curvature of the shell surface in the direction of the thread by 
k , ,  and the deflection a t  the center of bulging by 2h, w e  have 

1 
A1 = (2h)3/2 v&, . 

If we now introduce a system of rectilinear coordinates x .  y, and z ,  in 
such a way that the xy plane i s  the plane of contact of the thread at  the 
center of bulging and the x-axis i s  along the tangent, then the shape of the 
thread, being in contact with the surface along a geodetic, w i l l  be given 
by the equation 

k x' 
2 

y = 1 + 0 ( X S ) ,  z = 0 (XJ), 

where O ( 9 )  denotes quantities of the order  of 3.  

given by 
If the length of the chord AB equals 2 d ,  then the length of the a r c  AB is 

k2xa k:d3 
s = VI + k ix 'dx -  ( I  + +) dx = 2d+  - 3 

-d d 

Noting that 2 h r  k,#, the above expression reduces to 

Hence the expression derived previously, 

A1 = s - 2d = (2h)3/2 V K .  

Substitution of the above value of A1 into the  expression for  work A 
leads to 

A = 1 Q (2h)'/* VK. 3 

The load supported by the shell is determined with the help of the 
equilibrium condition 

d (U - A )  0,  

where the deflection 2h i s  varied. We have 

and finally 

1 Q = 3~~E1512 (k ,  + k,) -. 
V 6  
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A s  in the case of continuous loading of the shell surface discussed previously, 
tension Q is stationary with respect  to the parameter  2h; 
bulging. 

i t s  stability and s t a r t  to bulge is given by the formula 

this characterizes 

Finally, the cri t ical  thread tension which might cause the shell to lose 

1 Qe = 3xcEb5/2 (k ,  + k,) -- . v kn 

In the particular case of a spherical  shell of radius R ,  

and the formula for the cri t ical  tension is reduced to 

In conclusion w e  shall evaluate the cri t ical  p re s su re  acting on a shell 

It was pointed out in paragraph 3 that where loading 
of positive Gaussian curvature a s  transmitted by a plane [flat] elastic 
sup?ort (Figure 4). 
is done by uniform pressure,  the value of the cri t ical  load pe is not a 
function of the dimensions of the preassumed bulging zone. 
therefore, that in the case when the shell is loaded by p res su re  of an 
elastic support, l o s s  of stability w i l l  occur at the moment when the p re s su re ,  
at  some point of contact between shell and support, will reach the above- 

We conclude, 

found crit ical  value 

FIGURE 4 .  

It follows, therefore, that maximum support deflection, h ,  at the moment 
of l o s s  of stability, i s  given by the relation 

pe = hE’, 

where E’ i s  the rigidity of the support. 
Deflection of the support a t  any given point is expressed by 

where R ,  and RI are the principal radi i  of curvature of the shell a t  the 
center of contact with the support. 
force acting on the shell, namely, the required cr i t ical  force Q,. 

It is not difficult to evaluate thc total 

Q, = JJF’z dx  dy,  
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where integration is car r ied  out along the surface of contact between the 
shell and i t s  support. 

Qb = Z E h ' m .  

Substituting in the above expression the value of h a s  given by the 
relation 

pb = hE', 

we obtain 

P,' 
Qb = =v-/R,R, F .  

where pc is the upper cr i t ical  load under uniform external pressure .  

I2. SPECIAL ISOMETRIC TRANSFORMATION OF A 
SURFACE OF POSITIVE GAUSSIAN CURVATURE 

Bearing in mind the fact that we a r e  identifying, in some definitemanner, 
the postcritical deformation of an elastic shell with the geometric bending 
of its middle surface, we shall proceed in this section to the study of a 
special case  of isometric transformations of convex surfaces. 
case of such a transformation is that of a double m i r r o r  reflection. Results 
obtained from such a study w i l l  be used to  solve various problems of post- 

The simplest  

cr i t ical  shell deformations at  the initial stage of bulging. 4 

1. F o r m u l a t i o n  o f  t h e  b e n d i n g  p r o b l e m  a n d  
m e t h o d  of a p p r o a c h  t o  i t s  s o l u t i o n  

Let  F denote a regular  surface of positive Gaussian curvature and let 
7 be a closed curve on it enclosing a region G.  Further ,  l e t  7' be a curve 

on the above enclosed surface and G', a portion 
of G ,  enclosed by T'. We wish to  consider the 
problem of the isometric transformation of 
surface F accompanied by caving in of region 
G' and formation of r ib s  along the curves 7 
and 7' (Figure 5). When Î and T' a r e  plane 
curves, such a transformation is obtained by 
a m i r r o r  reflection of region G in the plane 
of curve 7 ,  followed by a subsequent m i r r o r  

FIGURE 5. reflection of a part of it, G', in the plane of 
curve 7'. 

0 
Taking into account future applications, the problem under consideration 

is of interest  to u s  for the special case when curve 7' is close to 7 and 
region G. bounded by curve 7,  is small  and of elliptic shape. 
such simplifying assumptions that we shall study our problem, and the 
method of solution offered is described below. 

It is under 
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In the special case when curves 'I and 7' coincide, the solution i s  trivial 
and the isometr ic  surface transformation corresponds to the original 
surface F. 
enough, the isometric transformation of surface F i s  different with regard 
to  substantial deformations only within the band enclosed by these two 
curves.  
may be replaced by infinitely small  ones. 

face within the band between curves 'I and f ,  since the deformation of 
this region of an elastic shell will be determined by considerations of 
ena-gctics. 
by some general  relation which w i l l  enable us  to determine the conjugation 
conditions of infinitely small  bendings, outside region G and inside region 
GI, i n  the limiting case  

It is natural to assume that when curves 'I and 7' a r e  close 

A s  fa r  a s  the r e s t  of the surface is concerned, finite bendings 

W e  shall not proceed to explore the s t ructure  of the transformed sur -  

We shall character ize  bending of the above-mentioned band 

Let A be any point on the curve 7 .  Consider a geodetic perpendicular 
from this point directed inward into region G up to i t s  intersection with 
curve T' at  point A'. Denote the length of this perpendicular by 6.  Under 
transition from surface F to the isometrically transformed surface, 
points A and A' w i l l  be displaced by TA and TX, respectively, where 7 and 
7' denote the bending fields of surface Fa t  the respective regions. 
determine the value of the expression 
to  be close enough. 

surface F, is accompanied by a rotation of the tangent plane with respec t  
to the tangent to curve 7 .  
reduced to a m i r r o r  reflection in the plane of contact to curve T. 
follows, therefore, that, when curves 7 ,  a r e  close enough, we may con- 

7 ,  i.e., directed aiong the binormal to this curve: 

We shall 
-.E;, assuming curves 7 and T' 

Formation of a r i b  along curve 7 ,  under an  isometr ic  transformation of 

In passing to the limit f - + ~  such a rotation i s  
It 

,. . 
. ..... _ _  - -  - - - -  - 

";A,... .*--4--  . . - I  . 
- .  . 

TA - T;, = oe. 

where e denotes the unit binormal vector. As  fa r  a s  the multiplier a i s  
concerned, whenever angle a between the plane of contact to curve 7 and 
the tangent planes to the surface i s  small, i t s  value i s  equal to 2a8. 

A s  previously, because of forthcoming applications w e  a r e  interested 
in the special case when curves 7 and f a r e  close to each other. Under 
such an assumption w e  pass  to the limit 7 ' + ~ .  The problem of the bending 
of surface F is thus reduced to that of finding fields of infinitesimally smal l  
beiidings T' within region G, and T autside this region, such that along the 
common boundary, 7 ,  of the region they satisfy the condition 

7 - 'E' = ae. 

In the above expression e denotes the unit vector along the binormal to  the 
curve 7 ,  and a is some function defined along this curve. 

f i r s t  the problem of finding fields 7 and 'E' in the case  when the elliptic 
region G is coaxial with the indicatrix of curvature  of the surface at  a given 
point. 
general case, namely, when the assumption of coaxiality i s  not valid. 

In order  to  simplify the presentation of the subject, w e  shall consider 

We shall call this the simple case.  La ter  on w e  shall consider the 
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2. G e n e r a l  r e p r e s e n t a t i o n  f o r  b e n d i n g  
f i e l d s  .E a n d  T' 

Le t  P be the center of the caved-in region G. Taking into consideration 
the fact that any substantial deformations of the surface F a r e  confined to 
the immediate neighborhood of point P, i t  is natural to introduce a rectan- 
gular coordinate system, xyz, with i ts  origin at P and such that the tangent 
plane a t  P be the xy plane, and the normal to the surface coincide with the 
z-axis. Further,  i f  the x - ,  y-axesbedirectedalong theprincipaldirections 
at point P, then the surface in the vicinity of P can be described by the 
equation 

I z = 4 (axa + by'), 

where a and b denote the principal curvatures of the surface at P. 
simplest  case,  when region G i s  coaxial with the indicatrix of curvature 
at  P, i t  can be defined by the inequality 

In the 

A x s + B y a < l .  

Let u s  introduce new coordinates u,  u on the surface, defined by 

u = x V / a ,  u = y V Z .  

In these new coordinates our surface i s  described by the equations 

Let E ,  q, C be the components of the bending field along the axes x, y. z 
From the equation of infinitely small  bendings respectively. 

d r d i  = 0, 

where r i s  a surface point vector, and T, a bending field vector, we obtain 
the following system of equations for the functions E ,  7. C :  

-!-E, + uc, = 0, 
% 
7 8 "  + UC" = 0, 
i b  

-&?" + - E ,  + uc, + VC" = 0. 

1 

1 1 

lfi 

Upon elimination of functions 
the Laplace equation for  C ,  

and q from the above equations, w e  obtain 

-+-=o. d't d't 
dvl 

Introducing the expression 
uv = u + iu, 

we can describe the general representation for  the C component with the 
help of the analytic function of the complex variable w as follows: 

C = ReC (w) .  
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The remaining two components, E and ?of the bending field can now be 
described with the help of the function C(@, by means of the formulas 

E = l&Re(-uC + C dm), 
q = VbRe (-UC - isC dw). 

The representation for bending fields derived above, applies equally 
However, bearing in mind the solution of the well to the general case. 

conjugation problem, it will be more convenient to  give a somewhat different 
form to the bending field representation in the general case. 

help of the inequality 
The caved-in region G can, in the general case,  be described with the 

al# + %&Y + a,,y2 4 1. 

Let  u s  introduce new variables u ,  u defined by the formulas 

x = + LlZU. 
y = Aslu + Amu. 

We shall select  the coefficients Ai, in such a manner that, in the new co- 
ordinates u,  u the surface shall be given by the equation 

1 z = - ( u  * + US), 
and the caved-in region G, by the inequality 

Aus + Bo' < 1. 

The possibility of such a selection of the coefficients A,, i s  made certain 
by the positive definiteness of the quadratic forms  

1 ,,..., I '...\ - ..a t 0 - 8 I -- 

which, with the help of the above-mentioned transformation, a r e  reduced 
simultaneously to the canonical form. 

Further ,  l e t  us  introduce the variables X, 5 defined by the equations 

.? = xvi. ij = y v 5 .  - 
This transformation again reduces the expression for z to a sum of squares  

z = -  ; ( X * + @ S ) .  

It i s  obvious that the transformation of variables f, 
and is given by the formulas 

into u ,  u is orthogonal 

.E= ucm8- osin8, 
5 = u sin8 + vcos 8. 

It follows, therefore, that the mutual interdependence between the variables 
x ,  y and u ,  u i s  defined by the expressions 

I 
x = -  (ucos8 -usinB), fi 

I y = - usin8 + ucos8). lfc ( 
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Angle 8 is evaluated by making use of the condition that our transformation 
reduces the form 

a,# + 2a,,xy + a& 

into 
Aua + Bv2. 

Quantities A and B a re  then eigenvalues of the expression 

with respect  to 

and are ,  therefore, the roots of the characteristic equation 

It was shown above that the bending field, when expressed through the 
variables f, ij, is defined by the equations 

C = Ret (a, 
E = I/oRe ( - i t+  rdZ), 

71 = I//bRe (-Gc - i r &), 

where < (2) is an analytic function of the complex variable 5 = SC + itj. 
Bearing in mind that 

Le t  u s  rewri te  the above expressions in te rms  of the variables u, u. 

Z = wetB, w = u + iv, 
we have 

C = Re C (w), 
E = I/nRe (- (u cos 9 - u sin 9) c + el8 J c dw), 
71 = ?%Re (- (u sin 8 + u cos 8) E - ieC8 C dw), 

where C(w) = c(rUei8) is an analytic function of the complex variable w .  

case.  
Such is the representation for surface bending fields in the most general  

3. C o n j u g a t i o n  of  b e n d i n g  f i e l d s  t a n d  5' 

i n  t h e  s i m p l e s t  c a s e  

The problem of isometr ic  transformation of a convex surface F ,  
presented in paragraph 1, was reduced, in paragraph 2, to that of con- 
structing two fields of infinitesimally small  bendings. t -beyond region G 
and t ' 4ns ide  G, such that on their mutual boundary, y .  they satisfy the 
conjugation condition 

t - t' = ae. 

In the above formula edenotes the unit binormal vector of the curve 7, and 
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a is some given function on the curve. Presently, we shall complete the 
solution of the bending problem by constructing the bending fields 7 and 7'. 

In paragraph 2 w e  found a general representation of the bending fields 
by making use of the analytic function of the complex variable w = u + iu , 
namely 

C = Re C ( w ) ,  
E = I/aRe ( - U C  + s Cdw), 

q = I/bRe (- uC - i s C d w ) .  

Analytic function C'(w),  within region G ,  i.e., inside the ell ipse 

A E - u ' +  ~ U * < l ,  

corresponds to the bending field 7'. while the analytic function C(w) ,  outside 
the ellipse 

A B 
TU'+ TU'> 1, 

corresponds to  the bending field 7 .  

fields along the curve 7 ,  i . e , ,  under 
The difference between the bending 

A B - u * +  T u ' =  1, 

which is of interest  to us, is given by the system of equations 

AC = Re AC ( w )  
AE =l/aRe (- uAC + AC dw) ,  

-., ~ r Y *\L [- U Y b  - L J IAC am), 

where AC (w) denotes the difference between the analytic functions C (w)  and 
C' (w)  on the ellipse 

A B -u '+  - u ' =  b 1. 

W e  shall now pass  from the complex variable w to the variable w, assuming 
that 

w = A o + Y .  

Let us  select  the constants A and p in such a manner that to the circle  
I w I  = I on the plane of complex variable w, there  should correspond the 
ellipse 

on the plane w .  
1, p to the requirements 

Evidently, this can be achieved by submitting the quantities 

22 



1 .  
I 

On the boundary of the G region, i. e., on the ellipse 

A B 
b -uu"+-uv'= 1, 

w = e r Q ,  and therefore 

u = (A + p)cos(p, u = (A --)sin?. 

In the formulas defining A T  = T-T' we shall effect the transition from 
variable w to w = e'?, by assuming 

A i  (w) = P ('2) + iQ (4. 
We thus obtain 

AC = P ,  
A E  = - I/Z\(A + p) cos p p  + J ((A + p) sin Cpp + 

+ (A - P) COS Y Q )  4). 
A? = l / ~ {  - (A - p) sin QP + u( ((A - p) cos ' p ~  - 

- (A + 14 sin YQW). 

Let u s  write down the formula of the curve 7 (the boundary of the G 
region on the surface) by taking the angle Q = argw a s  parameter  on the 
curve. We have 

and, therefore, the curve is defined by the equations 

Let u s  evaluate the vector of the binormal to curve r .  Its components 
along the x-,y-, and z-axes a r e  the minors  of the mat r ix  

We use  the notation 

Omitting all  the intermediate computations, we give below the final ex- 
pressions for a,, a, ,  and a,:  

4 a, = - - (A - p) Apcos* 'Q, 

a - 4 (A + p) ~p sins '2, 
V F  

2- v a  
i'- p' a, = - vi6 
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The conjugation conditions for the bending fields may be expressed as  

AE = aa,, 
AT = aa,, 
AC = sag. 

follows: 

The above expressions include a factor normalizing the binormal vector 
in a .  

substitute in the expressions thus obtained the above values of AE, A i , ,  
and A < .  We obtain 

Let u s  differentiate the conjugation conditions with respect  to 'p and 

(AC)' = P',  
( A € ) ' =  --Vg((A+ p ) c ~ s p P ' + Q ( ~ - ~ ) C o S ' p } ,  
(Aq)' = - vK( (A - p) sin 'p P' + Q (A + p) sin 'pp). 

The conjugation conditions can now be rewritten in the following form: 
4 (A + p) c o s y  P' + Q ( A -  p) c o s y  = - ( E ,  - p) E,p(acosa'p)', 

(A - p) sin 'p P' + Q (A + p) sin 'p = - - (E,+p) Ap (a sin*')', 
V/;Tb 

4 
v-a 

1 or, by incorporating the factor in 4 

P' + Q (A - p) cos p - 4 ( E ,  - p) Ap (acoss'p)' .  (A + p) cos 
(A - p) sin 'p P' + Q ( A  + p) sin 'p = - 4 (A + p) ).p (a sinS 'p)', 

P' = (A9 - pa) a'. 

At f i r s t  glance the above conditions may lead us  to  suspect some in- 

character  of curve 71, function a is, in reality, an a rb i t ra ry  function and 
we thus have 3 equations for the 2 functions P and Q .  However, It is easy 
to  see that the third equation follows from the f i r s t  two, and consequently 
we have two equations for the two functions P and Q ,  which w e  can solve. 

in region G, namely that of an ellipse. 
to  assume for J the simplest  possible function - a constant. 
deliberations wi l l  be car r ied  out for just  such a case.  

. . - -  
. . -..-I U L C  "I LAIC- O . * " * C .  U ' J  

^ ^ _ _ _ . _ I _  - ' - U '  

For  our purposes w e  have assumed a ra ther  simple shape for the caved- 
It would seem expedient therefore ,  

All fur ther  

Let 
a = const. 

Then 
P = (E,' - p') a. Q = - 6 k p  sin 2'p, 

and therefore the following condition, 

C - C' = (E,' - pa) a - 6kpa sin 2yi. 

holds for the analytic functions C and C' defining our bending fields on the 
curve T. 

expect function c to be such that bending field 7, outside region G, defined 
by it w i l l  vanish at  infinity. 

Let u s  now evaluate the analytic functions C and C' proper .  We shal l  

The necessi ty  for such a stipulation is dictated 
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by future applications. 
function C decreases  a s  l/wa a t  infinity. 

our problem ( i t  appears to  be unique), w e  shall try to look for i t  by assuming 

This condition will be satisfied if we require  that 

Leaving aside the question of the single-valuedness of the solution to 

where a, p, and c a r e  some constants. 
On the boundary of the G region, i. e., when / 0 1 =  1, 

c = = a (cos29 --i sin 2p), 
io= 

C ' =  p(hw+~)t+c=p((A~+p2)COS2~+ 

+ i (A2 - f )  sin 2y + 2Ap} + c. 
Therefore,  

Remembering now that 

c - C' = (A% - pa) a - 6Apasin 2p i, 

we obtain the following system of equations for the constants a ,  p, and c :  

a - p (A% + pa) = 0, 
a + p ( k 2  - pz) = 6Apa, 
- 2kpp -C = (A'- pa) U. 

Solving, we find 

Once functions C and c' a r e  evaluated we know the bending fields T and 
T' and have thus solved the bending problem of the surface F posed in 
section 1. 
a vector function r, the isometrically transformed surface i s  given by the 
vector function r + T '  within the caved-in region and by the vector function 
r + T  beyond it. 
the analytic functions C and C' in accordance wi th  the formulas derived 
in section 2. 

In the case when the original surface i s  defined by means of 

Vector functions .r and S' a r e  evaluated with the help of 

4. C o n j u g a t i o n  of  b e n d i n g  f i e l d s  - 
g e n e r a l  c a s e  

Jus t  a s  in the simple case, discussed above, the bending fields T and 
T' on the boundary, 7 ,  of the caved-in region satisfy the conjugation 
condition 

T - T' = ae, 

where e denotes the unit binormal vector of the curve 7 ,  and a i s  some 
function defined on this curve. 

25 



Bending fields T and T' can be represented with the help of the respective 
functions c (w): 

C = R e t  (w), 
E = 1;; Re {- (u cos 8 - osin 8 )  C + e t e j  Cdw}, 

q = C '8 Re {- (us in8  + ucos8) C-it?ejCdw). 

For  the field T , C ( W )  i s  the analytic function within the region 

Aua + Bo3 > 1, 

and the respective function, C'(w), for the field T' is analytic within the 
region 

Auz + BL' < 1. 

The boundary of these regions i s  an ellipse defined by the equation 

Au3 + BLJ' = 1. 

The difference between the bending fields T - T ' ,  along the curve 7 i s  

A t  = Re AC (w) ,  

AE = I/; Re { - (u cos 8 - KJ sin 8) AC + eie j ACdw}. 

~ ? = 1 / % R e { - ( u s i n B  + ~ c o s B ) A C - ~ e ~ ~ ~ A C d w ~ ,  

given by the system of equations, 

where Ac(w) i s  the difference between the analytic functions C(w) and C'@) 
on the ellipse 

Au' + Bu' = I .  

A s  in the simple case let us  introduce the comn1e.w vnriahle a r s i i m i n m  

w = AW + L ; 
0 

the constants A. 
c i rc le  I w I  = 1 on the plane w there  should correspond the ellipse 

a re  to be evaluated from the condition that to the unit 

Au' + B d  = I .  

For  this purpose w e  require  that 

On the G-region boundary, i. e., along the curve 7. 

w = el?, 

and, therefore, 
u = (k + p) cosy,  u = (L --p) sin?. 

Let u s  rewri te  the formulas defining the difference between the bending 
fields, A T ,  along the curve 7 by introducing w -- e'? in place of the variable W .  

Assuming, a s  in the simple case,  that along 7 
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we shall have 

Hence 

A t  = 1. -z Re {-- (A cos ('p + 8 )  + pcos (8 - y)) ( P  + iQ) + 
+ iecq J (P + i ~ )  (le'? - per'?) d'pl = 

= I.'; {- (A cos ('p + 8 )  + p cos (8 - 'p)) P - 
- (1 sin ('9 +a) - p sin (8 - c p )  ) Pdq - 
-J(Acos(cp+ 8)-pcos(B--:;))Q4). 

In a similar way we obtain, 

!!. (A?) = - v3 {(A sin (8 + y )  + p sin (8 - Q) P' + 
d7 + (A sin (y + 8) - ps in  (8 - 'p) Q). 

Finally 

d (Ai.) = P' 
d? 

If we denote the curve binormal vector components by a,, u,. and a3,  
then the conjugation conditions, after differentiation with respect to 'p, 

will be given by 
(A:) = (al+, 

drp 
d 

d 

( A d  = (az~) ' ,  

- (AC) = (a&'. 
d? 

Let us  evaluate the expressions for the components a,. a,. and a, and sub- 
stitute them in the above formulas. 

The surface F is given in t e rms  of the coordinates u, u by the equations 

I x=- ( (ucos 
V O  

8- usin8), 
I y = - u sin 8 + u cost+), v d  

*=I(, 2 '+d). 

Along the curve 7 

u = (A + p) cos 'p. u = (A - p) sin 7. 

Substitution of the above values of u, u in the surface equations leads u s  to  
the equations of the curve 'I 

I 
x = -[(A -+ p) cos lpcoslt - (A - p) sinrpsin81, 

y = -[(A + p) cos '9 sin 8 + (A - p) sin rpcos 81, 
v;i 
V6 

z=-  '' + Ap cos 2 ~ .  
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Using the curve equation w e  evaluate the binormal vector components 

4h 
az = I = 4* (A + p) cos8 sinS p -2 (A - p) sin 8cosJ.g, vi vi 

Substituting the above values of a,, a,, and as in the conjugation con- 
dition and incorporating the factor l / V a b  i n  a ,  we obtain 

- [A COS (p + 8) + p  COS(^ - p)] P' - Q [A COS (p + 8) - PCOS (8- p)] = 

= - 4Ap [ o  (A + p) sin 8 sinS p + a (A - p) cos 8 cos3 p]', 

- [A sin (p + 8) + ps in  (8 - p)] P' - Q [ A  sin (7 + 8) - 
- p sin (8 - p)] = 4Ap [a  (A + p) cos 8 sinS p - a (A - p) sin 8 coss p]', 

P '= [a(A'-p*)]'. 

Multiplying the second equation by i and adding to the f i r s t  yields 

Cancelling era and separating the rea l  and imaginary par ts ,  we obtain 

P' (A + p) COS p + Q (A - p) COS p = (4kp (A - p) a cos* p)', 
n,,> ~ . . ..I. . . . ,, . . . ~ I I ,  ~ - - -  

In the general case, we obtain for the functions P and Q a system of 
cquations identical to that of the simplest  case.  
we assume 

Proceeding a s  before ,  

Then 

a = const. 

P = (AS - p') a, 
Q = - 6Apa sin 2 ~ .  

Then, a s  in the case  previously discussed, we evaluate the analytic 
functions C and c' which define the bending fields: 

C = -  ,3 I C' = pw' + c. 

e=-$., a = - %  ). (AS + r') 0. 

With the help of the functions C and C', and using the respective formulas ,  
we determine the bending fields T and t', a s  well a s  the vector function 
which defines the isometrically transformed surface. 

1844 28 



5 3 .  LOSS O F  STABILITY O F  SHELLS OF ROTATION 
UNDER VARIOUS MODES O F  LOADING 

It i s  very probable that of the shells of positive Gaussian curvature, 
those of rotation a r e  the ones that a r e  mostly in use. 
loss  of stability of this c lass  of shells is very important. 
section we shall study loss  of stability of shells of rotation of positive 
Gaussian curvature when subjected to various modes of loading: internal 
pressure ,  external pressure ,  and torsion. In particular, w e  shall evaluate 
the cr i t ical  load in each one of the above cases. 

A s  a prerequisite to the study of loss  of stability of shells of rotation 
we shall study the loss  of stability of a shell subjected to external 
pressure .  
shallow shells of positive Gaussian curvature with edges rigidly fixed. 
In our present  study we shall s t a r t  with more general assumptions regard-  
ing the character  of bulging, having no connection with the case of double 
mi r ro r  reflection. 

Thus the study of 
In the present 

We studied this problem in section 1 where we considered 

1. L o s s  o f  s t a b i l i t y  of  a s h e l l  o f  p o s i t i v e  
G a u s s i a n  c u r v a t u r e  s u b j e c t e d  t o  u n i f o r m  
e x t e r n a l  p r e s s u r e  

We s t a r t  with the assumption that loss  of stability of a shell subjected 
to external pressure  is accompanied by bulging of a small, but finite, 
region G having the shape of an ellipse. 
coaxial with the indicatrix of curvature at i t s  center P. In particular, 
region G and the indicatrix may be s imilar  andplaced similarly, correspond- 
ing thus to the case discussed in section 1. 

We shall approximate the shape of the shell under noticeable bulging to 
the isometr ic  transformation of the original surface studied in section 2. 
In such a case, a s  was shown in section 1 ,  energy of shell deformation is 
concentrated, in the main, along the boundary of the bulging zone (we shall 
denote it by 7 ) .  

It i s  assumed that region G is 

For  unit length of curve 7 ,  i t s  value is given by 

In this expression, h i s  the normal deflection a t  the zone of bulging along 
the boundary 7 ;  
the plane of contact to 7 and the surface tangent planes; 
of elasticity; and v ,  Poisson's ratio. 

and along the boundary 7 of the bulging region, 

p is the radius of curvature of 7 ;  a ,  the angle between 
E,  the modulus 

F o r  the isometric transformation of the surface constructed in section 2, 

h = Re (AC),, 

where (AC), is the difference between the analytic functions along 7 ,  defining 
the bending fields without and within region G .  

Since G, the region of protrusion, is small, we can evaluate the angle a 
with the help of the formula 
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where k is the curvature of Curve 'I, and k, i s  the normal curvature of the 
original surface in the direction of 7 .  

taking the xy plane a s  the tangent plane at  the center of bulging P, the 
axis z to  be normal to the surface, and the origin to coincide with point p .  
The axes x and y a re  directed along the tangents to the l ines  of curvature 
a t  P .  
the equation 

Let U S  evaluate k and k , .  
As before, let  u s  introduce a system of rect i l inear  coordinates. xYz ,  

In such a case the surface in the vicinity of point P is defined by 

1 z = (axr + byr),  

and the f i r s t  and second quadratic forms  of the surface a r e  given by 

I = dx' + dy'. 
I I = adx' + bdy'. 

It follows, therefore, that the normal curvature of the surface is given by 

adx' -+ bdy' k, = -- 
dx'+dy' * 

It was shown in section 2 that curve 7 is defined by the equations 

x = pcosrp, y = qsin v, 
where 

ana A and p a r e  given by the relations 

The constants A and B define the region of bulging G 

A x r  + bys< 1. 

Since region G is small, the curvature of 7 may be evaluated with the 
help of i t s  projection on the xy plane, defined by the pair  of equations 

x = p c o s ~ ,  y = 4 sin 'p. 

Under these circumstances w e  obtain the following expression for  the 
curvature : 

P4 k =  
(p* sin' p + 4' cos' p? 

Substituting in the general  expression for the normal  curvature  of the 
surface 

dr = - P sin rfd'p. d y  = q cos 'pd'p, 
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we obtain the normal curvature of the surface in the 7 -direction 

- (A + p)' sin' 'p + (A - p)* cos) 'p 

p* sin* 'p + q* cos* 'p n -  

Further  substitution of the above values in the formula for u, followed 
by integration along the a r c  of curve 7,  leads to an expression giving the 
full energy of deformation. We have 

or,  remembering that 

w e  obtain 

The full energy of deformation is 

(A4 + p4 + 4A2pa). 2EVh U = a d s  = 
) m ( l - v X )  h ' - P  

T 

In view of the smallness of region G, and with o u r  choice of coordinate 
system, w e  can assume h to be equal to the difference between the com- 
ponents of the bending fields T and T'along the z-axis (section 2). Then 

h = P = (Az - p*) 0. 

We thus obtain a final expression for shell deformation energy 

We shall  now evaluate the work, A ,  done by the external pressure.  Let 
AV denote the change of volume, confined by the shell, under deformation. 
Then, 

A = pAV. 

Since region G is small, substantiai shell deformations occur in the 
vicinity of P. 
with the help of the integral 

It follows, therefore, that the quantity AV can be evaluated 

AV = C d x  d y ,  
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where C is the displacement, under deformation, of surface points in the 
direction of the z-axis.  
termined with the help of the two analytic functions 6 ( w )  and L‘(w) as follomts: 
Beyond the region of bulging 

The magnitude of the displacement i i s  de- 

C =  R e C ( w ) ,  

C =  ReC’(w).  

and within the region 

In section 2 w e  obtained the expression for the functions C(w)  and C’(w) 
We therefore have 

Integration of the f i r s t  term i s  ca r r i ed  out throughout the inner a r e a  of 
the ellipse 

Ax*  + Bya < I ,  

and that of the second, throughout the remaining portion of the xy plane. 
Substituting the variables u ,  u in place of the variables xy 

where integration of the right-hand side is nerfnrmod th-nr-nh-.+ +L.,- ;-..-- 
F O G  -- -- c * * c  _ I L L  

on the plane of the complex variable w = u + iv. 
tion of this integral let  us examine the curvelinear integral along the 
boundary of the above-mentioned ellipse 

For the purpose of evalua- 

I’ = 4 5’ (w) G d w .  

Transformation of the integral I’ to a surface integral along the area of 
the ellipse. using the Green-Ostrogradsky formula, and the fact that 
function C‘ (w)  is analytic, leads us  to 

I‘ = -2i Ss 5’ (w) d u  dv .  

The integral 

I = 8 C ( w )  % d w  

is transformed in the same way as an  integral taken a c r o s s  the ex te r io r  
pa r t  of the ellipse. It should be careful ly  noted that a t  infinity C ( w )  decreases  
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a s  1 W .  
boundary, 

Preserving the same sense when integrating along the ellipse 

I = 2i si C (w) d u  dv. 

Substituting the above values of the integrals in the expression for AV, 
we obtain 

I AV = - Re A $ (L (w) - 5' (w)) 5 dw. VG 

It should be noted that at  the integration boundary 

C (w) - 5' (w) = AC = P + iQ, 

where P and Q have the values 

P = (Az - pz) a, Q = -6Apa sin2y. 

At this stage w e  introduce a new variable w where 

w = A W  + E. 

In the w plane the contour of integration is the unit circle,  and therefore 

w = he'? + pe- '~ ,  
6 = Ae-v + pel?, 

A t  = (As- p2) a - 3 p a  (e2'? - 

After substituting the values of w, 5, and AC, derived above, in the 
integral 

$ A C ( w ) % d w ,  
la 1-1 

w e  proceed without difficulty to the integration proper and obtain the following 
result: 

$I AC (w) ii d w  = 2xio (A' + p4 t 4hzpa). 
I w 1-1  

At the s a n e  time w e  obtain 

AV = 2- (a' + p' + 4A'pp'), vi6 

and, therefore, 

A = 2 (A' + p4 + 4A2p*). 
vi6 

The quantities A and p characterize the shape of the bulging region and 
a ,  the magnitude of bulging. 
parameter  

It i's convenient to introduce a single 

E = m (A4 + p4 + 4Azp7, 

which character izes  the postcritical shell deformation. 
parameter ,  the energy of shell  deformation and the work done by the 

Using the above 
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external p re s su re  are evaluated from the formulas  

The load supported by the shell is evaluated by using the shell equi- 
librium condition at  the moment of bulging 

d z (LI - A )  == 0, 

W e  have 

and therefore 

Taking into account the fact that a and b are the principal curvatures 
of the shell a t  the center of bulging, w e  can rewrite the above formula a s  

2Ea' 
p =  V E ( l - " * ) R , R ; '  

where R, and R, denote the principal radii  of curvature.  
W e  observe that under the more general assumptions regarding the 

mode of bulging of the shell a t  the moment of loss of stability, w e  st i l l  

case studied in section 1. 

. .. 
. ~. _ _  ____-_ y. LYU.4. L 0 0  111 C l l C  l l A V l  c 3 l l l l t J L C  

2. S p e c i a l  i s o m e t r i c  t r a n s f o r m a t i o n  of a 
c o n v e x  s u r f a c e  of r o t a t i o n  

Experience shows that l o s s  of stability of a shell of rotation of positive 
Gaussian curvature subjected to internal pressure  may occur simultaneously 

with the formation of regularly placed elliptical 
dents along some parallel  (Figure 6).  
physical reason for such a l o s s  of stability is 
a s  follows. 
mentioned mode of shell  deformation, accompanied 
by the formation of dents elongated along the 
meridians,  there  may occur a general  increase 
of volume confined within the shell, in spite of 
the caving in of the shell surface along the 
system of dents inward into the confined volume. 

The 

It is possible that under the above- 

FIGURE 6. 
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As in our previous study w e  shall approximate the shape of the shell 
under bulging to an isometric transformation of the original surface.  
shall not study such a transformation in detail, but l imit  ourselves to 
evaluating all such quantities related to deformation as will be required 
for the solution of the shell stability problem. In particular, w e  a r e  
interested in finding out by how much the p l a n e s  of the parallels enclosing 
the system of dents move apart .  

Since deformation of the shell without the zone of dents is small, the 
finite surface bending of this par t  of the shell may be considered as an 
infinitesimally small  bending. The corresponding bending field w i l l  be 
evaluated by superposition of bending fields related to the formation of 
various single dents. 
single dent (of the region of bulging) w i l l  be considered by us  in the form 
determined in section 2 .  

parallel  h along which the regions of bulging a r e  situated. 
the component of the bending field in the direction of the meridian. 
P be the foot of the geodetic perpendicular drawn from point A to the 
parallel  T. 
such a way that the x-axis be tangent to the meridian, the y-axis tangent 
to the parallel, and the z-axis normal to the surface. 

It is natural to assume that the magnitude of the component is de- 
pendent mainly on the shell bulging regions in the vicinity of point P .  
Therefore, i f  w e  denote by E ( x ,  y) the bending f i e l d  component along the 
meridian, corresponding to the bulging region having P a s  a center, then 
the component 
whole system of bulging regions produced, w i l l  be 

We 

A bending field, conditioned by the formation of a 

Le t  A be any point of the surface situated a t  a small distance from the 

Let 
Le t  u s  evaluate 

We introduce a system of recti l inear coordinates x ,  y, z, in 

in which w e  a r e  interested, and which is a function of the 

where yk denotes the coordinates of the centers  of the adjacent bulging 
regions. 

Le t  u s  examine more  closely the function E ( x ,  y).  
addition to the variables x ,  y, w e  have also introduced the variables u.  u, 
defined by the relations 

We recall that in 

7 

x v a = u, y V6 = u, 

the complex variable 

and the complex variable w 

w = u + i u  

(see section 2 ) .  
t u r e s  a t  the center of bulging P,  and k, p a r e  parameters  characterizing 
the shape of a bulging region. 
small for  small  bulging regions. 

field component E ,  related to the appearance of one single bulging region 

In the above expressions, a and b a r e  the principal curva- 

It is imperative to note that k and p a r e  

In section 2 we have derived the following expression for the bending 

E = I/; Re(--uC + Cdw) , 
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where C(w) is an analytic function of the complex variable wwhich, outside 
of the region of bulging, is determined with the help of the formula 

Introducing the same value of C in  the formula for E and integrating, w e  
obtain 

When Iwp'I has a lower limit, then the corresponding absolute value of W ,  

defined by the relation 

w = Iw + li 
W '  

is quite big fo r  small  k and p. 
P w e  may neglect the term p i 3 d  in the formula for i and, moreover,  w e  
can consider that 

I t  follows, therefore, that for small  'h and 

w = I w .  

We may therefore rewri te  the formulafor  the I component in a simplified 
form 

E = -12z b'i Re (s + -!-), 

or, by separating the real par t  

Let  

Then 

where 
u = h I./;. 

The summation on the right-hand side of this equality, in accordance with 
our assumption, includes the adjacent regions. However, because of the 
very satisfactory convergence of the series, w e  may consider the summing 
up a s  ca r r i ed  out for all values of k :  
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When the spacings of the bulging regions a r e  close enough, i .  e.,  when 

AV = L J ~  - vk-1 

i s  small, we may replace summation by integration in the formula for E .  
We then obtain 

or, by replacing the variable v = ut ,  

We have 

and therefore 

Introducing in the above the value 

,J. = -3 (A2 + 19) 0, 

we obtain the following final formula for 1: 
- 31; ~ I i ) , * ( h ~ + p ) a  

2Au E =  

If we have point Aon the opposite side of the zone of bulging regions, i t  
will be displaced along the meridian, under the deformation in question, 
by exactly the same amount but in the opposite direction. 
therefore, that the moving apart  of the parallel planes, confining the zone 
of the bulging regions in which w e  a r e  interested, will amount to 

It follows, 

where a is the angle between the tangent to the meridian and the surface 
axis. Introducing 

U y =  - 
VE' 

we obtain 
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We recal l  that in the above a and b denote the normal curvatures of the 
surface in the direction of the meridian and parallel respectively, Ay 1s 
the distance between the centers  of adjacent bulging regions, and +(A2 + p2) o 

i s  a quantity characterizing a separately taken bulging region, 

isometrically transformed surface and wi l l  proceed to investigate the shell 
stability problem. 

With the evaluation of the quantity E ,  w e  complete our study of the 

3 .  C r i t i c a l  i n t e r n a l  p r e s s u r e  f o r  a c o n v e x  
s h e l l  of r o t a t i o n  

The crit ical  internal p re s su re  causing lo s s  of stability of a shell of 
rotation, accompanied by the formation of a system of bulging regions along 
some parallel  circle,  will be determined by a study of the elastic equi- 
librium under substantial bulging. The equilibrium condition is 

d (U- A )  = 0, 

where I!/ is the shell deformation energy and A is the work done by the 
pressure.  

deformation energy, related to the foriliation of one bulging region 
In paragraph 1 w e  arr ived a t  the following expression for the shell 

If we denote by n the number of bulging regions, the corresponding ex- 
pression for the total shell deformation energy w i l l  be 

" - ' -" u (A* + p4 + 4A2pp) n. 
)m(l - v * )  

W e  now turn to the question of work A .  If w e  denote by AV the change 
in volume enclosed by the shell caused by bulging, then the work done will 
be 

A = pAV, 

where p denotes the internal p re s su re .  
Let  u s  consider two planes perpendicular to the surface axis and con- 

fining the zone of bulging regions. 
by an increase in distance between the two planes under deformation of the 
shell  and formation of bulging regions. We shall  denote the corresponding 
components of AV by AVe and AVi respectively. 

The quantity AV, is negative and i t s  value, corresponding to one bulging 
region, is given by the formula 

The change in volume, AV, is conditioned 

A V ; = - -  (A4 + p4 + 4A9pP). vz 

Consequently, for all the n regions 

AV, = - 2% (A' + p' + 4A'p'). vz 
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i 
I. 

The other quantity i s  

AVe = rp'e, 

where p is the radius of the parallel  circle along which the bulging regions 
a r e  situated, and E i s  the increase in distance between the two parallel  
planes enclosing the zone of bulging regions under the deformation of the 
shell. Substituting in the above the value of E as determined in paragraph2. 
w e  obtain 

Finally, we obtain the following expression for  the work Adone by the 
internal p re s su re  p :  

A = - ria (A4 + p4 + 4).*p*) pn vs + 

Fixing the shape of a bulging region (parameters  p and A )  let  us  vary  
From the condition the deflection in the bulging regions (parameter  a ) .  

of equilibrium 
d E (U - A) = 0 

we obtain the following relation for the value of pressure  p supported by 
the shell at  bulging 

Multiplying the above relation by 

and noting that 

w e  obtain 

nAy = 2up, 

Dividing the above by 

and assuming 
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leads u s  to the expression 

Therefore, 

where 

The parameter  a* is a function of the parameters  A, p and, consequently, 
is a characterist ic of the shape of a bulging region, 
domain of allowable values of the parameter  0.. 
of all that 

[ .et  u s  investigate the 
To do this we note f i r s t  

has  -I/* and +l/% as i t s  l imits.  Further,  B* is a monotonic function of b, 
since 

dtJ* - 1-22.92 
d %  ( I  + 2W)2 > '. 

It follows, therefore, that a* has -lis and as i ts  lirA?its. 

+hi+ tho  I??.?: ;::::::-L 

being accompanied by bulging along a given parallel  circle,  i s  given by the 
formula 

Taking into account the interval of allowable values of a* we conclude 
vv~LiLii LIIC biieii may lose its stability, this 

I t  should be remembered that in the above formula, a and b are the 
normal curvatures of the surface along the meridian and parallel  respective- 
ly, p i s  the radius of the parallel, and o is the angle between the tangent 
to the meridian and the surface axis. Introducing in this formula R ,  and 
* R 2 ,  the principal radii  of curvature of the surface,  where 

1 1 R,=;;, R ~ = T  

and remembering that 

w e  obtain 
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The least  value of p is obtained by letting 9*=l/,. The corresponding 
value of 8 i s  Since 

this i s  only possible when k = p, meaning that the bulging region defined by 
the equations 

h f r  A-p . 
x = 7 COS Q, y = sin y ,  

v a  v' b 

degenerates into a segment of the x-axis (meridian). 
pretation of such a result  is that the dents formed a s  a resul t  of l o s s  of 
stability by the shell must be greatly elongated along the meridians. 
has  been confirmed by corresponding experiments, 

Le t  u s  use the above formula to evaluate the critical p re s su re  for a 
flattened out ellipsoid of rotation. Let a and b be the semiaxes of the 
ellipsoid, where b < a. Since the Gaussian curvature of a flattened out 
ellipsoid increases  monotonically a s  the equator is approached, and the 
radius, p ,  of the parallel  increases as well, the minimal value of p i s  
obtained when bulging occurs along the equator. On the equator 

The physical inter-  

This 

bz o = a  I ? R , = a , R , = ,  

It follows that 

In the case of a strongly flattened out ellipsoid (b<a)  

4EbP 
y 3 ( I  --vz)a2 

p" -- 

It is important to note that the magnitude of the cri t ical  p re s su re  is 
never lower than the above value, for any degree of surface flattening out. 

4. L o s s  of s t a b i l i t y  of a c o n v e x  s h e l l  of 
r o t a t i o n  s u b j e c t e d  t o  e x t e r n a l  p r e s s u r e  

In section 1,  and in paragraph 1 of this section, w e  discussed the 
problem of loss  of stability of a shallow convex shell subjected to external 
pressure.  
obtained 

The following formula for the value of cri t ical  p re s su re  w a s  

2E82 
dz(I - v s ) R I R Z '  P =  
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The above resul t  was based on the assumption that the shell is shallow and 
in calculating the work done by external p re s su re  

A = p A V ,  

we used the following expression for AV, the change in volume confined by 
the shell, 

AV : !.) Ldxdy, 

where 6 is the z component of the bending field during shell deformation. 
This formula would be exact i f  the bending field were to be perpendicular 
to the xy plane, and accordingly, the deformed surface were to be defined 

2 = I ,  f i, 
by 

where z,, i s  related to the original surface.  In reality, such an assumption 
may be considered to hold good only in the vicinity of the center of bulging 
and, consequently, w e  might expect a different value of the external 
cri t ical  p re s su re  for a nonshallow shell. 
problem for convex shells of rotation. 

an external p re s su re  i s  accompanied by the formation of a system of dents 
along some parallel  (Figure 7 ) .  
with the resul t  obtained in paragraph 2 leads u s  
to think that such a l o s s  of stability can be 
realized if the dents are substantially elongated 
in the direction of the parallel  along which they 
are situated. A s  in the case  of internal 
pressure,  w e  shall consider the change in 

as being made up of two parts:  A V i  and A V , .  
AV, is the decrease in volume directly related 

to the formation of bulging regions, and AV6 is determined by the proxi- 
mity of the parallel  planes containing the zone of bulging regions: 

Present ly  w e  shall discuss  this 

We assume that l o s s  of stability of a convex shell of rotation loaded by 

Comparison 

- V U ~ U I I I ~ :  cunnnea ~y the shell  under deformation 

FIGURE I. 

0 
It follows that work done by external pressure,  p ,  under shell  deformation 
is equal to 

X O  
A = - (A4 + pa + 4A.p.r) pn + 
+ “pa 2 v : c o s  a ~ p  (AS + pa) ap. 

vii6 

This  formula differs only in sign from the corresponding formula in the 
case of internal pressure.  
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As f a r  a s  energy of deformation is concerned, its value i s  given by 
the expression derived previously, namely 

(k' + p' + 4)i"') an. 2Eha22x U =  VE(1-9) 

A s  in the case of internal pressure,  from the condition of shell equi- 
librium, 

d E (U - A) = 0, 

we obtain the following relation for the value of pressure,  p ,  supported by 
the shell a t  bulging: 

Solving for p ,  we obtain the following value after simplification: 

where, as before, 

and 

The l eas t  value of p i s  obtained for the greatest, in absolute magnitude, 
negative value of B * ,  i. e., for B* = - I f s .  

fo r  p ,  we obtain 
Substituting this in the expression 

Application of this formula to the case  of shallow shells, i f  this is at  
all possible, resul ts  in a value of p which differs but slightly from that 
obtained previously 

2Earab 
fJ= V/RI-+) ' 

since in the case of shallow shells, (r=u/Z, and, consequently, cos a=O. 

follows that B = - I f l  and, consequently, A = - P. 
Let  u s  examine the shape of the bulging regions. Since B*= i t  

A bulging region is 
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defined by the equation 

k+-P h - p  . 
v g  V S  

x = - cos F, y = - sin y .  

When 1 = --p, our ellipse degenerates into a segment of the y-axis. 
physical interpretation of this i s  that a t  loss  of stability caused by external 
pressure,  the regions of bulging a r e  strongly elongated along the parallel. 

can be transformed a s  follows: 

The 

A s  in the case  of internal pressure ,  the formula for the critical load 

It should be remembered that in the above, R, and R,  denote the principal 
normal curvatures of the shell along the parallel where bulging takes  place, 
and p i s  the radius of the parallel. 

of a closed spherical shell of radius R. 
A s  an application of the above resul t  we shall consider loss  of stability 

In this case,  

R, == R. R ,  = R. 

The minimum value of P i s  obtained for p = R ,  i. e., when formation of dents 
takes place along the equator. 
p ressure  is 

The corresponding formula for the cr i t ical  

This value equals 
R e m  a r k . 

with spherical segments and described in the book by A. S. Vol’mir,* 
bulging under external pressure  commences at  the edge of the segment.  
It is reasonable to assume that this is accompanied by l o s s  of stability, 
a s  4escribed in the present section. 

of the corresponding value for  shallow shells. 
According to data obtained from experiments car r ied  out 

5. L o s s  of s t a b i l i t y  o f  s h e l l s  o f  r o t a t i o n  
s u b j e c t e d  t o  t o r s i o n  

A shell of rotation subjected to the action of a turning moment applied 
at i t s  edge may lose i t s  stability with formation of bulging regions inclined 
to the meridian (Figure 8).  Let  u s  find the value of a torque causing loss  
of stability in such a case.  

Vol’rnir. A .  S .  Gibkie plastinki i obolochki (Flexible Plates and Shells).- Gostekhizdat. 1956. 
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, 

I. 

Approximating the deformed shell surface to an isometric t rans-  
formation of i t s  original shape, w e  shall use the same considerations a s  
in paragraph 2 for the case of internal pressure.  In this case there occurs  
a certain twist of the shell, through an angle e ,  as  evidenced by the bulging 

regions inclined to the meridian. 
evaluate the magnitude of this angle. 

We take any point A on the shell surface 
situated outside the zone of bulging and in i t s  
vicinity. Let u s  find the displacement of this 
point along the parallel, caused by the deforma- 
tion in question. Consider a perpendicular 
drawn from point A to the parallel  7 ,  along 
which the centers of bulging regions a r e  
situated, and let  P denote the foot of this 

Let  u s  

@ 
0 

FIGURE 8. 

perpendicular. 
coordinates taking point P a s  the origin, the tangent plane a t  P to be the 
xy plane, and directing the x -ax i s  along the meridian of the surface. 

ing that the magnitude of 
bulging situated in the vicinity of P ,  w e  can state: 

As in paragraph 2, we introduce a system of recti l inear 

Let 5 be the displacement of point A in which we are interested. Assum- 
is mainly dependent only on the regions of 

In the above, q(x. y) is the y component of the bending field corresponding 
to the bulging region having P as i t s  center, h is the distance between 
point A and the parallel  r, and yb a r e  the coordinates of the centers  of 
bulging regions which a r e  near to P .  

of the analytic function 
L,et u s  examine the function 9 ( x ,  y ) .  It can be expressed with the help 

in accordance with the formula 

q = a l /bRe( - (us inB$vco~6) - i i e '~Scdn} .  

Substituting C = alw' in the above formula, and noting that, 

w e  obtain 

(u  sin 9 + u cos 8 )  q = a 1 / 6 R e ( -  wp 

F o r  ;mall bulging regions I w I  is large,  Consequently w e  may consider 
that 
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F o r  the same section 

and therefore, 

w = A w ,  

Let  u s  make a transition from the coordinates u ,  u to x ,  y. We have, 

I 

I 

x =  --(ucosB--uoin8), 

y =  - usinB+ucosB), 

x I/;r + iy v$ = (u + iu) et* = we*, 

vi- 
)/d 

+ by* = US + v' = I w p. 

With the help of the above relations, the expression for 7 can be 
transformed a s  under 

Substituting this value in the expression for 5, we obtain 

Because of the symmetry of the bulging regions with respect  to the 
point A ,  w e  may omit summation with respect  to the f i r s t  t e rm and take 

Further,  as in paragraph 2, w e  replace summation on the right-hand 
side by integration, Denoting 

AY = Y k  - Yk-1 ,  

w e  shall have 

Introducing a new variable 1.  w e  obtain 
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Therefore 

.. 4ahsa sin28 q=-- 
AY * 

Introducing in the above 

we obtain a final formula for 5 

= 12n sin 28Ap (ha + pa) a 

AY 

A s  was to be expected, the displacement, 5 ,  of point A is independent of 
the distance h .  

If we denote by p the radius of the parallel 'I along which the regions of 
bulging a r e  situated, then 

We a r e  now in a position to determine the value of the angle of twist e .  

e - 27 - 24n sin 20Ap (19 + p') a 

P P AY 

The work done by moment M ,  at bulging, is 

Let u s  find the shell deformation energy, U. In section 1 we derived 
the following formula for the energy of shell deformation, calculated per  
unit length of the boundary of bulging: 

- 2Waahk U =  I/iz (1 - "2 ) . 

In the above formula, a i s  the angle between the plane of contact of curve 
7 ,  which i s  the boundary of bulging zone, and the planes to the surface; 
k is the curvature of curve r; and h is the deflection within the zone of 
bulging. 

face in the vicinity of point P is defined by the equation 
Referred to the system of coordinates introduced previously, the sur-  

I 
2 = (ax* + by*). 

The curve on the surface i s  given by the equations 

u = (A + p) cosy, u = (A- p) sin 'p. 

Variables u, uare  related to x ,  y by the formulas 

1 

1 

x = - (u cos8 - u sin a), 

y =  - u s i n 8 + u c o s 8 ) .  
vi 
vd 
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For small  bulging regions we may consider that 

where k is the curvature of curve T, and k ,  is the normal curvature of 
the original surface in the 
curvature is 

direction. A general  expression for the normal 

odx' + bdy' k,= - 
dxa+dy' * 

Substituting in the above the values 

I 

I 

x = - ((A + p) cosy cos8- (k- p) s i n y s i n 8 ) .  

y = ((k + p) cos y sin 8 + (A - p) sin 'p cos 81, 

vi  

we obtain the normal curvature of the surface in the direction 

differentiation being carr ied out with respect  to the variable p ,  

evaluated with the help of i ts  projection on the xy plane. 
In the case of a small  bulging region, the curvature of T may be 

We obtain 

An element of a r c  of curve r i s  criven h77 

ds = ( x ' ~  + y'*)"'dy. 

Let u s  evaluate the integral 

We have 

Substituting the above values in the expression under the integral sign, 
we obtain 
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The full energy of deformation is 

(A4 + p4 + 4A2pa). U = i U d s , =  ~- 2ECah 2.3 
1 1 2 ( 1 - v 9  h"P 

T 

Substituting in the above 

h =  (is- I' 2 1 0 3  

we obtain 

The energy of deformation for all the n regions of bulging is 

From the condition of equilibrium of the shell 

d (U - A) = 0 

we obtain an expression for the moment M which  causes loss of stability 
of the shell 

Noting that 

we obtain 

n Ay = 2 ~ p ,  

where 

The leas t  value of M is obtained for  e = 1  and  9=45. This value is 2 
evaluated with the help of the formula 
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In the above, R, and R ,  a r e  the principal radii  of curvature along the 
parallel  where bulging takes place, and P is the radius of the parallel. 

In conclusion le t  u s  note that l o s s  of stability under the action of a 
twisting moment M i s  accompanied by formation of strongly elongated 
dents (e = l/J inclined to the meridian a t  an angle of 8 = 45". 

5 4. POSTCRITICAL DEFORMATIONS OF SHELLS OF 
POSITIVE GAUSSIAN CURVATURE SUBJECTED TO 
EXTERNAL PRESSURE. INFLUENCE OF INITIAL 
DEFLECTION ON STABILITY O F  SHELLS 

The subject of postcritical deformations of shells of positive Gaussian 
curvature subjected to ext.erna1 p res su re  or to  the action of a concentrated 
load was studied by the author in 1 2 1 .  
i t  offers a more  exact expression for the value of the elastic deformation 
energy. 
shell  deflection on its stability. 
termined for shells subjected to external pressure.  

The present study differs in that 

Results obtained a r e  used for investigating the influence of initial 
The value of the working load i s  de- 

I 

1. T h e  s i m p l e s t  p o s t c r i t i c a l  d e f o r m a t i o n  

In the study carr ied out in 1 2 1  of postcri t ical  deformations of shells of 
positive Gaussian curvature rigidly fixed a t  the edges, w e  approximated 
the deformed shell surface by a m i r r o r  image bulging. 
was based on the fact that internal deformations of the shell  middle su r -  

must be considered, to some approximation, as a geometric bending. By 
identifying the shell  postcritical deformation with an isometr ic  transforma- 
tion w e  have arrived, through purely geometric considerations, at  the 
conclusion that deformation of the shell  surface must  be close enough to  
a corresponding shape of a m i r r o r  image bulging. 

deformation of the shell middle surface constitutes a geometric bending, 
and the further assumption that the shell  is rigidly fixed a t  the edges. 
reality, the above conditions a r e  only partly satisfied, especially when 
w e  speak of a rigidly fixed surface edge. 
may not be absolute, in the case of an elastic shel l  the significance of a 
rigidly fixed edge decreases  a s  we move further away from the edge and, 
hence, i t s  force a s  an argument of proof is lost  in the reali ty of a practical  
case. 

The above consideration l imits  application of the resul t  arr ived at  in 
1 2 1 ,  regarding the approximation of postcri t ical  deformation by a m i r r o r  
image bulging, to the case  when the region of bulging encompasses  the 
g rea t e r  par t  of the shell and the rigidly fixed shel l  edge is near  t o  the 
boundary of this region. 

namely, the rigidity of the fixed edge i s  not great  enough or, the s ize  of 

Such an assumption 

,. .. . . , .  - - 
-r- - p r o  cm.711 -..A 

The decisive cri terion in the above derivation w a s  the assumption that 

In 

Although rigidity of a fixed edge 

In the case of a shell where the above conditions are not satisfied, 
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the bulging region is small  compared to the dimensions of the shell, thus 
violating the stipulation regarding the nearness of the built-in edge, we 
shall approximate the shape of the shell by a general isometric transforma- 
tion. 

We shall  name the case of postcritical deformation of a shell of positive 
Gaussian curvature, as the simplest, i f  i t  can be satisfactorily approximated 
by a m i r r o r  image bulging. Where such an approximation is not possible, 
we shall name the case a s  general. 
of postcritical deformations of a shell of positive Gaussian curvature when 
subjected to a uniform external pressure  or  to the action of a concentrated 
load. 
with the more exact expression for shell deformation energy in the zone of 
strong local bending on the boundary of bulging 11 1. 

two parts,  
of strong local bending along the ribs,  and U p  i s  the energy of bending 
ac ross  the main surface of the shell. 

USiEg the formula 

Study / 2 /  discusses the simplest  cases  

Presently we wish to  deal with this question again, in connection 

A s  always, we split the energy of elastic deformation of the shell into 
U, and U p  . U, is the energy of elastic deformation in the zone 

The value of energy Up,  per unit a r e a  of shell surface, is determined 

where k ,  and k,  a r e  the principal shell curvatures; 
E the modulus of elasticity; and p, Poisson's ratio. 

r i b s  of the surface, which come into being in the process  of postcritical 
deformation, was evaluated in 1 2 1 ,  and per unit length of a r i b  is given 
by the formula 

8 i s  the shell thickness; 

The energy of deformation in the zone of strong local bending dong  the 

- U, = cEG'f'a'f'k''a. 

In the above formula, u is the angle between the plane of contact of the 
r i b  and the tangent planes of the shell surface; k is the r ib  curvature; 8 ,  
the shell  thickness; and the constant c = 0.2. A more  exact expression 
for the energy of deformation in the zone of strong local bending w a s  
derived in ] I / .  It differs f rom the expression given above by the quantity 

where 1/R is the normal curvature of the original surface in a direction 
perpendicular to the rib, and k ,  and k, a r e  the normal curvatures of the 
deformed surface in the same  direction, for the inner and outer semi- 
regions of the r i b  respectively. 
of deformation in the zone of strong local bending, and per unit length of a 
rib, is as follows: 

Thus, the new expression for the energy 

Let  u s  evaluate the energy of postcritical deformation in the simplest 
case,  assuming that the zone of bulging is known to be small. In 1 2 1 ,  the 
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following expressions w e r e  derived f o r  the value of the energy: 

where 2h is the deflection of the shell at  the center of bulging, all othcr 
quantities retaining their previous meanings. 
correction in the value of ol, the corresponding difference in the value 
of U, w i l l  be 

Taking into account the 

Let  u s  evaluate this quantity. 
F i r s t  of all we note that k,  and k ,  are equal in thcir absolute values 

but differ in sign. Therefore, 

The original surface i s  defined by the equation 

I 
y (k# + k&), 

and the zone of bulging is 

It is bounded by an ellipse with semiaxes 

It is convenient to define this ellipse in parametr ic  form, 

x = a c o s t ,  y = b s i n t .  
W e  have 

U' Y Z: + Z: = (klx)' + (kay)'. 

The angular coefficients of the normal to the boundary of bulging 

1 y (k,x' + k&) = h 

a r e  equal to k,x and k,y. 
a direction perpendicular to the boundary of bulging is 

It follows that the normal curvature of the surface in 
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Let u s  now find an expression for AU,, making use of the parametr ic  
representation of the ellipse given above. We have, 

Substituting in the above 

and 

ds - (sin21 cos' t )  
a - 2h - + - dP ,  

k i  ka 

w e  obtain 

ads 2h -=- ~~ (k,2 C O S ~  1 + kf sina t )  dt. 
1 2  

Therefore,  

Comparing this quantity with the energy of bending across  the original 
surface 

when p=O, they differ in sign only. 

must  bring about a s imilar  conclusion (U,  = -AU,) in the general  case a s  
well, i. e., fo r  p #O. With due regard  to  this fact, w e  shall assume in 
future that UF = -AU,, and w i l l  use the following expression for the full 
energy of deformation 

We assume that a more detailed investigation regarding the value of A U , ,  

u = ? r c ~  ( 2 h ) w 2  (k ,  + ha). 

2 .  I n v e s t i g a t i o n  o f  p o s t c r i t i c a l  d e f o r m a t i o n s  
f o r  u n i f o r m  e x t e r n a l  p r e s s u r e  a n d  f o r  a 
c o n c e n t r a t e d  l o a d  - t h e  s i m p l e s t  c a s e  

In accordance with the general  remark  made in paragraph 1, w e  shall 
discuss  now the case when the greater  par t  of the shell is subjected 
to  postcritical deformations, the edge of the shell being rigidly fixed. 
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Under such conditions we may regard the postcritical deformation of the 
shell a s  being close to the corresponding shape of mi r ro r  image bulging. 

a concentrated load P ,  acting normally to the shell surface.  
deflection of the shell a t  the point of application of the force by 2 h ,  we 
obtain the following expression for the energy of e las t ic  deformation: 

We shall consider f i r s t  the deformation of the shell under the action of 
Denoting the 

U = W E  (2h)'Wlt ( k ,  + &J. 

The work done by force P equals 

A = 2hP. 

The shell equilibrium condition i s  characterized by the stationary value 
of the expression U - A, i. e., 

d ( U - A ) = O .  

From the above expression w e  deduce the relationship between the force P 
acting on the shell and the deflection, 2h, caused by it, 

P $ xcE V%bk/a ( k ,  + k8) ,  

where Hdenotes the mean curvature of the shell surface at the point of 
application of the force. 

also increases .  
when the shell is acted upon by a concentrated load. 

It is obvious that application of the above formula is limited by elast ic  
deformations of the shell, i. e., the maximum s t r e s ses ,  conditioned by the 
deformation in question, must not exceed the elastic limit of the mater ia l .  

tion maximum s t r e s s  due to bending on the boundary of the bulging zone i s  
determined with the help of the formula 

This formula shows that with the increase of deflection (2h) ,  the force P 
This indicates stability of the s ta tes  of e las t ic  equilibrium 

It was shown in /2/ that in the case of the simplest  postcritical deforma- 

' a = c'E (2h)1M1/* I/R. 
where K i s  the Gaussian curvature of the surface (K = k,k,) .  i s  a constant 
r l ,  and all other quantities retain their previous meanings. It follows, 
therefore, that application of the above resul t  i s  limited to such deflections 
2h, for which 

c'E l/%sl/r 1/R an, 

where a. is the temporary resis tance of the mater ia l .  
From the above it i s  possible to determine the force P, which i s  cer ta in  

to produce plastic deformations on the boundary of bulging 

P, = $ H a . .  
VK 

In particular, for a spherical shell 

54 



It i s  interesting to note that this force does not depend on the radius  of 
the shell. 

external pressure  p .  
Let  us  investigate now the case  when the shell i s  loaded by a uniform 

The work done by the external load i s  

From the shell equilibrium condition 

d (U - A) = 0 

we obtain the following value for the pressure ,  p ,  supported by the shell 
when bulging r i s e  is 2h: 

From this formula we see  that load p,  supported by the shell, decreases  
a s  the deflection (2h) increases .  
deformations under uniform loading. 

accentuated fashion. 
either by the edge of the shell, o r  by the appearance of plastic deformations 
on the boundary of bulging. 
the second case, a r e  explained more fully in 11, supplement 1 / .  

Let  u s  assume that postcritical deformation is brought to a stop by the 
shell edge against which, ultimately, the region of bulging r e s t s .  In such 
a case  the quantity pi, which is the lowest value of the load supported by 
the shell, i s  determined with the help of the maximum allowable deflection, 
and consequently, by the shell dimensions. 

rigid elements running along the l ines  of curvature of the surface.  
elements divide the shell into rectangular panels with s ides  a and b .  
is reasonable to inquire what the spacing of the reinforcing elements should 
be in order  that the value of the load supported by the shell should not be 
less than a given quantity p i .  

F o r  the solution of the above problem w e  determine f i r s t  the value of 
the maximum allowable deformation, 2h, using the condition 

This indicates instability of postcritical 

In this case transition to postcritical deformations i s  effected in an 
Postcritical deformation is being brought to  a stop 

The reasons for stoppage of deformation in 

In order  to  clarify ideas, l e t  u s  assume that the shell is reinforced by 
Such 

It 

We then find the corresponding values of a and 6 :  

o r  

3cEH )/r&"' 
3cEH )/&a'/' 

PI 

PI  ' a =  

b =  



It is evident that when using the above result ,  it  is not possible to 
assign too great  valuzs to p ,  for, in such a case,  the corresponding 
calculated values of a and b would be too small .  This would mean that the 
deformations in question, though they may embrace the entire panel, could 
not be considered a s  substantial, in the sense required by the theory. 

note that when k ,  and k, a r e  of the same order,  the thcory imposes the 
observance of the condition 

In order  to present the above r e m a r k  in a more concrete form, let  US 

In tile case under consideration this would mean that 

Le t  u s  find the maximum dimensions of the panel a, b by stipulating that 
the postcritical deformation s tays  elastic up to the panel boundary. 
consequent maximum deformation 2h then satisfies the condition 

The 

Substituting the above value of 2h into the expressions for a and b .  w e  
obtain 

Le t  u s  assume that postcritical deformation h a s  been brought to a stop 
because of the appearance of plastic deformations on the boundaryof 
bulging. We shall evaluate the minimum load supported by the shell  in 
such a case. The deflection, corresponding to such a load, is obtained 
from the condition 

c'E ?%&'/a 1/K = a,. 

Substituting the above in the formula for p ,  we obtain 

Application of the above formula is l imited by two conditions. 
this method can only be applied if  the deformation a t  the moment when 
plastic. deformation appears on the bulging boundary is substantial. 
means that the quantity 2h, determined with the help of condition 

F i r s t ,  

Th i s  

c'E 1. %E'/*v/R= oB 

* '  

must  satisfy the inequality 
2h i> 1, 
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or, what amounts to the same thing, 

Further,  with the appearance of plastic deformations on the bulging 
boundary, the postcritical deformation must embrace a substantial portion 
of the shell. This means that the l inear dimensions a and b of the panel 
must be of the same order  a s  the quantities 

3. I n f l u e n c e  o f  i n i t i a l  d e f l e c t i o n  o f  t h e  
s h e l l  o n  i t s  s t a b i l i t y .  W o r k i n g  l o a d  

Experience shows that a convex shell subjected to  external p re s su re  
lo ses  i t s  stability and commences to bulge a t  a pressure which is usually 
less than the cri t ical  pressure,  and i t s  value is given by the formula 

The basic reason for such a lowering in the value of the cri t ical  p re s su re  
is the imperfectness of shape of the actual shell, or,  stated otherwise, 
initial deflection. 
prepared to perfect shape substantiate the theoretical value of the cri t ical  
p re s su re .  There is no reason, therefore, to doubt the validity of the 
cri t ical  p re s su re  formula and no need to attempt to improve it. 

The fact that actual cri t ical  p re s su re  for a working shell having an 
initial deflection may possibly be much l e s s  than the theoretical, accounts 
for ser ious difficulties in shell design, for such avalue cannot be accepted 
a s  the working pressure.  
to accept a s  working load the value of the lower cri t ical  load ( see  paragraph 
2).  
therefore,  i s  less sensible to the imperfectness of shape of the shell. 
w e  accept the lower cri t ical  load a s  the working load, then lo s s  of stability 
of the shell  is fully excluded, since the load supported by the shell at post- 
cr i t ical  deformation is greater  than the lower cri t ical  load. 

The above-mentioned solution of the working load problem is simple and 
safe. 
lower cr i t ical  load. Let  u s  discuss it, taking a s  an example a shell having 
the shape of a shallow spherical  segment and subjected to external p re s su re .  
F o r  such a shell the value of the upper critical p ressure  is determined 
with the help of formula 

Experiments carr ied out with spherical  segments 

A natural way out of such a situation would be 

Such a load is conditioned by substantial shell deformations and, 
If 

However, i t  cannot be accepted because of the very low value of the 

where R is the radius of curvature of the shell, and 6 is the thickness. 
lower cri t ical  pressure,  p r r  is given by 

The 



where h is the height of the segment, and c is a constant -0.2. Hence, 

We note that even a t  h = 86,p,fp,  -0.1, i. e., the lower cri t ical  value equals 
0.1 of the upper. 

An acceptable solution to the working load problem would be to define 
such a load, a s  the load at  which lo s s  of stability occurs  when initial 
cieflection is taken into account. Presently,  w e  shall attempt to evaluate 
such a load for the case of a shallow shell of positive Gaussian curvature 
when subjected to external pressure.  

In paragraph 2 w e  derived the following formula for the value of a load 
supported by a shell when the bulging r i s e  equals 2 h :  

Here, K i s  the Gaussian and H the mean curvature of the shell. 
natural to assume that if the initial shell deflection i s  in conformity with 
the shape of bulging, such a shell will lose  i t s  stability when subjected to 
a pressure given by the above formula. We suggest, therefore, that the 
cri t ical  p re s su re  be evaluated when initial deflection equals 2h,  using 
the formula 

It  is 

and to consider same as the working pressure.  

assumption that the parameter  8/2h is sufficiently small .  
fore, that i t s  application should be limited to such cases when there  is a 
significant initial deflection. 

For a spherical shell, formula (*) is reduced to 

It should be noted that the derivation of formula (*) was based on the 
It follows, there- 

BeIow, we present a graph (F igu re  9), showing the relationship between 
the nondimensional coefficient k and the initial deflection 2 h / 6 .  

This graph shows how doubtful i t  is to invest in a high degree of shell  
workmanship, when reliance is placed on the value of the cr i t ical  p ressure  
which is close to the theoretical. 

FIGURE 9. 
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SUPPLEMENT 

LOSS OF STABILITY OF THREE-LAYER SHELLS 

The resu l t s  we have obtained of stability of shells under various modes 
of loading may be applied to the so-called three-layer shells. A three- 
layer  shell consists of thin exter ior  layers  prepared from mater ia ls  having 
high mechanical characteristics, and a comparatively thick layer  of the 
filler made of a weak material. Similarly to the case of ordinary shells, 
the energy of deformation a t  bulging of a three-layer shell is concentrated, 
in the main, a t  the boundary of the bulging zone and consists of the energy 
of deformation of the outer layers  and the energy of deformation of the 
filler. 

the shell surface in the tangent plane and along the normal respectively, 
w e  obtain the following expression for the energy of deformation of the 
outer layers ,  per  unit length of the boundary of bulging, y : 

Denoting by u and v the displacements, under deformation, of points of 

where 8 is the thickness of the outer layers; p ,  the radius  of curvature of 
T; E ,  the modulus of elasticity; and V ,  Poisson's ratio. Integration is 
performed along the neighborhood of the bulging boundary, r .  

In order  to  obtain the energy of deformation of the inner layer (the filler), 
w e  make the assumption that deformations of the outer layers  a r e  identical 
(F igure  10). As a resul t  of these deformations, the inner layer is subjected 
to  shear  deformations, defined by the derivative v', and energy of deforma- 
tion, per  unit volume of the filler, will be 

G"" - 
2 '  

where G is the shear  modulus of the filler. 
deformation of the filler, per  unit length of 

The corresponding energy of 
the bulging boundary, w i l l  be 

where t is the thickness of the inner layer. 

three- layer  shell, w i l l  be 
Consequently, the full energy of deformation, pe r  unit length of a 
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FIGURE 10. 

Further ,  a s  in the case of ordinary shells considered in section 1, w e  
standardize the variables u. u. s ,  assuming 

where a is the angle between the plane of contact to curve 7 and the surface 
tangent planes, and 

As  a result, we obtain the following expression for the energy of deformation: 

Limiting ourselves to the case of such shells and their deformations for 
which the parameter  &/pa i s  small ,  w e  change the l imits  of integration to 
f 03. W e  then obtain 

F o r  simplification of print, wc? shall omit the b a r s  above the variables 
ii, 0 ,  and 3 .  

strong local bending with the help of the condition of minimum energy 
under a given general deformation 

W e  shall determine the shape of the shell  a t  bulging in the zone of 

( s e e  section 1). 
the functional 

Our problem is therefore reduced to that of minimizing 

h = const. 

W e  have, 
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It follows that in the case of a three-layer shell, the functional 

ut + ij, 
differs from the corresponding functional for  an ordinary shell by t e rms  
which a r e  independent of the variation functions u. u .  This  means that the 
functional under consideration has  stationary values for the same values 
of a s  in the corresponding problem in section 1. 

Making use of the resul t  obtained in section 1, w e  obtain the following 
expression for energy of deformation of a three-layer shell: 

In order  to obtain the full energy of deformation of the shell, we must 
integrate the above expression along the a r c  of curve 'I, bounding the zone 
of bulging. 

The f i r s t  t e rm of the expression D e +  u, was integrated in section 1. 
Making use of the resu l t s  obtained there, we obtain 

where R, and R, a re  the main radi i  of curvature a t  the center of bulging. 
Le t  u s  now evaluate 

su, ds,. 
7 

We have ( see  section 1) 
Q = pk,, 

where k, is the normal curvature of shell surface in the 'I direction. 
I V i a  
P 
-= 

A ( R ~  sin' 'p + R, COS' 'p)t/s ' 

1 
R1 sins, + Rtcossrp' k, = - . . ~  

ds,= A(R,sin*rp+ R,c~s*rp)~'*dp, 
h' (R1 sin' 'p + R, cos'p) d'p . 

V/RIRl ads, = 

It follows that, 

Therefore,  the full energy of deformation of the shell is equal to 

The work done by the external pressure,  p .  equals 

A = x p  I/m,M*. 
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. 

From the shell equilibrium condition at  bulging, 

d ( U - A ) = O ,  

where the parameter hi;' i s  to vary, we obtain the value of the p re s su re  
supported by the shell at bulging, i. e., the cri t ical  p re s su re  

where R,  and Rn a r e  the principal radii  of curvature of the shell; 
thickness of the outer layers;  t ,  the thickness of the inner layer; E ,  
the modulus of elasticity, and Y .  Poisson's ra t io  of the outer layers,  
respectively; and G ,  the shear  modulus of the filler. 

6, the 

The formula for p can also be presented in the following form: 1 

where K is the Gaussian, and H the mean curvature of the shell at  the 
center of bulging. 
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